ar X iv : s ol v - in t / 9 80 70 07 v 1 2 2 Ju l 1 99 8 On the integrability of nonlinear partial differential equations

نویسنده

  • H. J. S. Dorren
چکیده

We investigate the integrability of Nonlinear Partial Differential Equations (NPDEs). The concepts are developed by firstly discussing the integrability of the KdV equation. We proceed by generalizing the ideas introduced for the KdV equation to other NPDEs. The method is based upon a linearization principle which can be applied on nonlinearities which have a polynomial form. We illustrate the potential of the method by finding solutions of the (coupled) nonlinear Schrödinger equation and the Manakov equation which play an important role in optical fiber communication. Finally, it is shown that the method can also be generalized to higher-dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : s ol v - in t / 9 40 70 03 v 1 1 8 Ju l 1 99 3 INVARIANT INTEGRABILITY CRITERION FOR THE EQUATIONS OF HYDRODYNAMICAL TYPE

Invariant integrability criterion for the equations of hydrodynamical type is found. This criterion is written in the form of vanishing for some tensor which is derived from the velocities matrix of hydrodynamical equations.

متن کامل

ar X iv : s ol v - in t / 9 80 30 05 v 1 6 M ar 1 99 8 Algorithmic Integrability Tests for Nonlinear Differential and Lattice Equations 1

Three symbolic algorithms for testing the integrability of polynomial systems of partial differential and differential-difference equations are presented. The first algorithm is the well-known Painlevé test, which is applicable to polynomial systems of ordinary and partial differential equations. The second and third algorithms allow one to explicitly compute polynomial conserved densities and ...

متن کامل

ar X iv : s ol v - in t / 9 80 80 19 v 1 2 7 A ug 1 99 8 Hypercomplex Integrable Systems

In this paper we study hypercomplex manifolds in four dimensions. Rather than using an approach based on differential forms, we develop a dual approach using vector fields. The condition on these vector fields may then be interpreted as Lax equations, exhibiting the integrability properties of such manifolds. A number of different field equations for such hypercomplex manifolds are derived, one...

متن کامل

ar X iv : s ol v - in t / 9 70 30 03 v 1 6 M ar 1 99 7 ON THE POINT TRANSFORMATIONS FOR THE SECOND ORDER DIFFERENTIAL EQUATIONS

Point transformations for the ordinary differential equations of the form y ′′ = P (x, y) + 3 Q(x, y) y ′ + 3 R(x, y) (y ′) 2 + S(x, y) (y ′) 3 are considered. Some classical results are resumed. Solution for the equivalence problem for the equations of general position is described.

متن کامل

ar X iv : s ol v - in t / 9 70 70 14 v 1 2 7 Ju l 1 99 7 The constrained modified KP hierarchy and the generalized Miura transformations

In this letter, we consider the second Hamiltonian structure of the constrained modified KP hierarchy. After mapping the Lax operator to a pure differential operator the second structure becomes the sum of the second and the third Gelfand-Dickey brackets defined by this differential operator. We simplify this Hamiltonian structure by factorizing the Lax operator into linear terms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998